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ABSTRACT

It has been hypothesized that a human pilot uses the same set of generic skills to

control a wide variety of aircraft. If this is true, then it should be possible to construct

an electronic controller which embodies this generic skill set such that it can

successfully control different airplanes without being matched to a specific airplane.

In an attempt to create such a system, a fuzzy logic controller was devised to

control throttle position and another to control elevator position. These two

controllers were used to control flight path angle and airspeed for both a piston

powered single engine airplane simulation and a business jet simulation. Overspeed

protection and stall protection were incorporated in the form of expert systems

supervisors.

It was found that by using the artificial intelligence techniques of fuzzy logic

and expert systems, a generic longitudinal controller could be successfully used on two

general aviation aircraft types that have very different characteristics. These controllers

worked for both airplanes over their entire flight envelopes including configuration

changes. The controllers for both airplanes were identical except for airplane specific

limits (maximum allowable airspeed, throttle lever travel, etc.). The controllers also

handled configuration changes without mode switching or knowledge of the current

configuration.

This research validated the fact that the same fuzzy logic based controller can

control two very different general aviation airplanes. It also developed the basic

controller architecture and specific control parameters required for such a general

controller.
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1 INTRODUCTION

Thisprojectwasperformedaspartof the National Aeronautics and Space

Administration (NASA) Advanced General Aviation Transportation Experiment

(AGATE) program. The purpose of the AGATE program is to reduce the

manufacturing, training and proficiency costs associated with general aviation airplanes.

One of the areas of funded research is the development of advanced flight

controls concepts. The purpose of the flight controls research is to develop a control

system that works in conjunction with advanced display systems to allow a pilot with

minimal training to operate safely in instrument meteorological conditions.

There are three basic types of control systems to be examined. These are

stability augmentation, attitude command and fully decoupled controls.

Stability augmentation involves altering the stability characteristics, usually by

electronic means. A yaw damper is an example of this. These types of systems have

had limited acceptance by the pilot community because they generally reduce

maneuverability or create a feeling of "heaviness" in the controls.

An attitude command system has been shown to significantly reduce pilot

workload, particularly in turbulence [1]. This is a system where the pilot commands

airplane attitude. Using separate control surfaces, this system can be implemented as a

combination fly-by-wire / mechanical control system where the pilot directly controls
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themechanicallydriven surfaces while simultaneously commanding an attitude.

The fly-by-wire surfaces are then deflected as required by a fly-by-wire system to

achieve

the commanded attitude. An advantage of this type of system is that the airplane can

be landed with a failure in the fly-by-wire system. This advantage carries with it the

liability that it requires the pilot to be trained to fly the airplane using only conventional

control techniques as well as attitude corrunand techniques.

The decoupled control system has been shown to significantly reduce pilot

training time [2-4]. With this system the pilot commands climb rate, airspeed and turn

rate. This system is a fly-by-wire system that does not readily lend itself to a

mechanical backup. Also, to produce an airplane that requires less training time, it is

highly desirable to teach the pilot only one control scheme. These two factors require

that a decoupled flight control system be made highly reliable since its operation is

critical to the safety of flight.

One of the problems with any fly-by-wire system is that it takes a significant

amount of time and effort to tune the gains of the control system to match the response

characteristics of the airplane. Also, a control system developed and tuned for a

particular model cannot be expected to work on a different model even if the two

models are very similar.



1.1 Fuzzy Logic as Applied to a Reusable Decoupled Flight Control System

A relatively new technique for controlling a plant through a feedback control

loop is the use of fuzzy logic as developed through artificial intelligence research. A

controller based on fuzzy logic is less sensitive to variations in the plant than a

conventional controller [5 - 8]. This characteristic may enable a fuzzy decoupled

control system developed on one airplane to be moved to another model with minimal

retuning requirements. It may also eliminate the need for gain scheduling as a function

of flight conditions.

Another artificial intelligence technique that fits well with fuzzy logic is an

expert systems supervisor. This part of the controller can be programmed to provide

control boundaries such as angle of attack and airspeed limits.

If a general flight control scheme such as the fuzzy / expert system described

above can be perfected, then much of the development time and expense of matching

an autopilot to a specific airplane can be eliminated [9 - 11]. With a reduction in

development costs, a decoupled flight control system could be practical for general

aviation airplanes. The implimentation of this type of system has the potential of

greatly reducing the initial training and proficiency costs of operating personal aircraft.

This potential reduction in training and proficiency costs was the motivation for this

research.
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Previous work has shown that this type of control system can work in flight

vehicles. A brief summary of some of this work follows.

Reference 12 used a fuzzy logic gain scheduler instead of the standard

numerical interpolation gain scheduler in a non-linear F/A-18 simulation. It

demonstrated that fuzzy logic could be successfully employed in a linear control system

to provide gain scheduling.

Reference 13 used fuzzy logic in a cargo ship autopilot in an attempt to reduce

wear on components and improve fuel efficiency.

An adaptive fuzzy logic controller was developed using reinforcment learning in

reference 14 to improve the simulated response characteristics of the space shuttle in

pitch, roll and yaw tracking. Also, the performance degradation associated with a non-

adaptive fuzzy controller and conventional control systems was examined.

The authors of references 15 and 16 used fuzzy logic to control bank angle and

roll rate on two different aircraft models. In addition, reference 15 used a method of

partitioning the state space and applying the Lyapunov stability criterion to selected

rule subsets to show asymptotically stable control.

Reference 17 explored some of the limitations of fuzzy logic as applied to flight

control systems. The author of this paper used it for omidirectional range navigation in

an automatic flight system for transport aircraft. In this application the fuzzy controller



requiredmore information than was originally envisioned. Hence the controller was

not as robust as was originally expected.

Reference 18 applied fuzzy control to an unmanned helicopter. The fuzzy

controller consisted of two layers, a navigational layer and an attitude layer. The pilot

was able to control the machine via radio control by providing one of eight commands

such as hover, turn left, fly forward, etc.

Reference 19 used fuzzy logic in combination with a conventional control

structure for the outer loop of an automatic flight control system which was limited to

approaches to an aircraft carirer. The research was done with a simulation of an F/A-

18. Human knowlege was used as a basis for the fuzzy system which augmented the

conventional system. This paper was an attempt to combine the best features of fuzzy

and conventional control into a single system.

Reference 20 used a fuzzy logic / expert system to create knowlege bases and

membership functions for the purpose of modeling selected parts ofa helcopter flight

control system. For this study the outputs were then linearized for analysis.

1.2 The Goal of this Research

This work was based on the hypothesis that the control scheme described above

is the means by which human pilots control aircraft. A flight instructor teaches the
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student the rule set (e.g. You're a little slow, add some power.) and simultaneously

identifies the fuzzy membership functions (what 'a little slow' looks like and how much

is 'some' power). After gaining experience in several types of aircraft, the pilot

generalizes the rule set and membership functions such that he can control an unfamiliar

airplane satisfactorily the first time he flies it. (As long as the machine generally

responds like the other airplanes he has flown.) The expert knowledge is conveyed to

the pilot via stall warning knowledge of airspeed limits, etc.

Assuming this hypothesis is true, it should be possible to design a generic

electronic flight control system based on fuzzy logic which can satisfactorily control

any airplane which meets FAR part 23 or 25 handing characteristics requirements. The

key to success was then extracting from a pilot and implementing in a computer the

input sets, rule sets and output sets with sufficient accuracy and completeness that the

electronic controller could control any general aviation airplane satisfactorily.

The purpose of this work was to demonstrate that a controller can be devised

that can satisfactorily control a wide variety of FAR part 23 and 25 airplanes.

Therefore this research concentrated on controlling two airplanes that are at very

different positions within general aviation - a 9 passenger plus 2 crew 16,000 pound

business jet (Beechjet), and a generic 6 place 2,500 pound retractable landing gear

piston powered single engine airplane (Bonanza class).



Since fuzzy logic control systems are nonlinear, the usual analysis tools

associated with linear control system design could not be used. The analysis was

therefore done using time histories of aircraft simulations being controlled by the

controllers developed in this project.

Using a simulation of a business jet, a fuzzy logic controller was developed to

provide decoupled control of the longitudinal axis. This system was designed to follow

a calibrated airspeed and flight path command. It also provided limited envelope

protection (maximum allowable airspeed and angle ofattack)i ARer the controller was

developed on the business jet it was moved to the single engine piston airplane and its

performance evaluated on that airplane.



2 FUZZY LOGIC CONTROL THEORY

2.1 Fuzzy Overview

Fuzzy logic control can be explained as a sequence of four steps. These are

fuzzification of the input variables, application of a set of rules, aggregation of the

output of the set of rules and defuzzification of the aggregate output.

2.2 Fu_ification

Fuzzy logic for controls is an extension of fuzzy set theory. The idea of fuzzy

sets was introduced by Lotfi A. Zadeh, a professor of Computer Science at the

University of California at Berkeley in 1965 [21]. The difference between conventional

set theory and fuzzy set theory is that unlike conventional theory, fi_zzy set theory

allows an element to be partially in a set, and the degree to which it is in that set can be

defined. An example of this might be the set of appropriate initial control inputs

required to move a car from the right lane to the leg lane of a road while traveling at 30

miles per hour. Any steering motion to the right would take the car in the wrong

direction. Therefore, all of these inputs belong to the set by degree 0 (they are

definitely not in the set). Turning the steering wheel more than one half turn to the leg

is also inappropriate at this speed, therefore these commands also belong to the set by

8
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degree0. Assume that the optimum command for this task using some criteria is 20 °

leit. This input would have a membership of degree 1. Assume also that acceptable

performance results from inputs in the range of_+ 10 ° from this optimum. Since these

are also clearly appropriate, initial inputs from 10 ° to 30 ° leit are also members by

degree 1. Turning the wheel 1° to the leit will eventually cause the car to change lanes

in the correct direction, however it is not a command that is normally used for this

purpose. This input may be a member by degree 0.1, meaning that it is mostly not a

member, but is also somewhat a member.

Membership functions then are used to define the degree of membership of a

particular element. They span the domain of possible elements and generally h_/ve a

range from 0.0 to 1.0. Membership functions can be trapezoidal with sharp edges, bell

shaped with continuous derivatives, symmetrical or not. The discrete set is a special

case of fuzzy sets where the membership function is rectangular. Although the above

examples all have a degree of membership at their extremes of 0.0 this need not be the

case. Figure 1 shows some examples of typical membership functions [22-24].
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2.3 Application of Rules

The rule set in fuzzy logic is a linguistic set of rules as opposed to a

mathematical set of rules. For example a linguistic rule that may be used in fuzzy logic

might be "If the car is going too fast, then reduce the pressure on the accelerator". The

measured parameter "speed" has a degree of membership in the set "going too fast".

To the degree that the antecedent is true (the degree to which the value of"speed" has

membership in the set "going too fast") is the degree to which the consequent of the

rule ("reduce the pressure on the accelerator") is applied. Notice that the rule

consequents, as well as the antecedents may be fuzzy sets.

It is postulated that humans control complex processes using this type of

reasoning. It is obviously true that we pass on the skill to operate complex processes

using precisely this type of linguistic structure.

Rule antecedents may have multiple inputs such as "If the car is going too fast

and there is no pressure on the accelerator, then apply pressure to the brake pedal". To

handle these types of rules the equivalent of the discrete set operators u (or) and

(and) must be defined for fuzzy sets. There are many ways this can be done, and at this

point in time there are no universally accepted standards. However, one of the most

common is the use of the function min(a,b) for intersection (a _ b) and the function

max(a,b) forunion (au b) [22].
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Rules may also have weights compared to each other. For instance, the rule "If

there is an obstacle in the road then apply hard pressure to the brakes" may have a

weight of 100 and all other rules have a weight of 1.

2.3 Output Aggregation and Defuzzification

After all the rules have been evaluated, the remits need to be combined or

aggregated. The two most popular methods of aggregating the outputs are Mamdani's

method [25] and the newer Sugeno's (or Takagi-Sugeno-Kang) method [26].

Using the Mamdani method, the output sets are fuzzy with membership

functions defining the degree of membership for each possible discrete output. The

outputs are combined by truncating each consequent membership function at the level

of its corresponding antecedent degree of membership, then combining all the truncated

antecedent membership functions.

Defuzzification of the aggregate output set is done by finding the centroid of

the area defined by the aggregation process. The output is the value of the domain at

the centroid. [22]. Figure 2 shows an example of aggregation and defuzzification using

the Mamdani method.
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Figure 2. Basic schematic of a fuzzy logic system using the Mamdani method.

The Sugeno method is the same as the Mamdani method except that the output

membership functions are not fuzzy, but are instead singleton spikes which may be

movable. The output for a specific rule has the form

rule output = kl * rule input + k2
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Figure 3. Basic schematic of a fuzzy logic system using the Sugeno method.

The aggregated output is then the weighted average of all the individual rule

outputs, the weights of which are the degree of membership for the corresponding

input(s) for that rule. The ability of the singleton to move via the kl term is the

equivalent of gain scheduling or mode switching. It may be noted that if the

membership function is 1.0 over the entire domain, and the k2 term is zero, the result is

a classic set of multi-input multi-output linear control laws. Thus, it can be said that

classic control theory is a special case of the more general fuzzy logic control theory.

It is worth noting here that fuzzy set theory was not developed primarily as a

control architecture. It is really a means of mapping a set of inputs to a set of outputs.

As such, it can be used for modeling physical phenomena just as it can be used to
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controlthese phenomena. Two of the more attractive attributes of fuzzy logic systems

are the inherent nonlinearity of the output, and the relative ease with which imprecise

human expert knowledge can be captured and incorporated into a mathematical scheme

that can then be programmed into a digital computer that requires precision.

The Sugeno method was chosen for this application because it crisply defines

the limits of the output control. Since the Mamdani method uses the centfiod of the

output sets, the control engineer must program outputs greater than the maximum

allowed in order to obtain the maximum allowed. This characteristic was found to

make definition of the fuzzy outputs very difficult to obtain for flight controls.



3. TOOLS

Since there are no general tools for design and analysis of non-linear control

systems, and since fuzzy logic systems can take on the form ofahnost any type of

control system, it was determined that design and analysis would be performed in the

time domain [27]. To do this, the system being controlled and the controllers must be

simulated. This need was met with the Simulink soRware and simulations of two

different airplanes. The development of the f_zzy sets and rules was facilitated by the

use of the Fuzzy Logic Toolbox which is an add-on to Simulink.

3.1 Simulink

Simulink was used as the simulation environment for this project. Simulink is

an add-on software module to the Matlab program published by The Mathworks

company. It allows the developmen t and analysis of nonlinear simulations. It is

particularly well suited to this application because the simulation is developed by

drawing block diagrams on the computer screen which the soi'cware then integrates to

obtain time histories of the output parameters.

16
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3.2 Fuzzy Logic Toolbox

The fuzzy logic tool box from The Mathworks was used to develop the fuzzy

controllers. The fuzzy logic toolbox is an add-on module to Simulink. This module

simplifies the development of fuzzy sets as well as output rules. It also has several

visualization tools to aid in the selection of the parameters which define the set

boundaries, and shows how the rules combine to produce the output of the fuzzy

system.

3.3 Beechjet Simulation

The simulation used to develop the controllers was of a Beech model 400A

(Beechjet). This is a 16,000 pound business jet which uses two jet engines for

propulsion (table 1 summarizes the characteristics of this airplane). The simulation was

a high fidelity model matched to flight test data throughout its normal operating

envelope. The model included turbulence and ground effects but no ground reaction

model. Simulator architecture was similar to the piston single architecture as shown in

appendix A. Aerodynamic data was in the form of look-up tables. The simulation was

nonlinear and could be trimmed for steady level flight at any flight condition within it's

normal operating envelope. It could then be "flown" via control inputs to any other

flight condition in that envelope. Longitudinal control inputs to this simulation were
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control column force and throttle position. It was modified to accept elevator position

as an input which would be commanded by a controller. This model was used to

develop the controllers because it was available at the beginning of the project while

the piston single simulation was not.

Weight

Pitching Inertia

Business Jet Single Engine Piston Airplane

13651 lb 2500 Ib

15480 slug-R^2 1300 slug-t_^2

Wing Chord 6.09 ft 5.0fi

Wing Area 241.4 t_^2 160 ft^2

Wing Span 42.65 fi 30 ft

Maximum Altitude 45,000 ft 15,000 t_

Maximum Airspeed 0.78 Math / 320 KCAS 170 knots calibrated (KCAS)

Table 1. Simulated airplane characteristics
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3.4 Generic Piston Single Simulation

The simulation used to check for generality was loosely modeled after a Beech

King Air model 200 (12,500 pound, 7 passenger, twin engine turboprop). High fidelity

King Air stability derivatives were selectively modified, and then the whole model

scaled to represent the size and performance of a Bonanza. The two turboprop engine

models were then replaced by a single piston engine model. Table 1 summarizes the

characteristics of this simulated airplane.

The Simulink block diagram for this simulation is included in appendix A. Both

simulations were integrated using a Runge Kutta numerical integration scheme with

fixed time steps of 0.01 seconds. This step size was chosen after running simulations of

step functions driving the elevator and observing the short period response. Time steps

smaller than 0.01 all had identical responses while larger step sizes showed slightly

different results.



4 CONTROLLERS

There were two controllers working simultaneously to control the longitudinal

axis. The first controller manipulated the elevator in response to flight path error and

error rate as referenced to a flight path command. The second controller manipulated

the power lever angle or throttle in response to airspeed error and error rate as

referenced to a calibrated airspeed command. Both controllers had a fuzzy inference

engine commanding elevator or throttle rate based on their respective inputs.

Wrapped around the fuzzy inference engines was additional logic to modify the

raw inputs and output, then integrate the control rate into control position and limit the

control travel as necessary.

The additional logic was required to allow an envelope protection system to be

incorporated, and to facilitate the adaptive control structure needed for the engine

controller. Also, it allowed tailoring of the control laws to match the turbulence level.

Both controllers and associated surrounding logic were designed to imitate a

method of"control used by a human pilot. Note that control rate, not control position

was the output of each fuzzy controller. This was selected because a pilot does not

know the position of the elevator (control column). He just knows that he needs to

move it some amount in a given direction.

4.1 Flight Path Angle Controller

The flight path angle controller had a fairly simple architecture and a relatively

simple fuzzy inference engine. A bank parameter input was included which was not

used in this research because this project only dealt with the longitudinal axis. It was

incorporated as a place holder for future use when the lateral axis is included.

2O



4.1.1 Controller Architecture

A block diagram of the flight path angle controller is shown in figure 4.
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Figure 4. Elevator controller architecture.
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Inputs to this controller were commanded flight path angle (gamma command),

actual flight path angle (gamma deg), bank angle (phi deg), angle of attack (aoa),

airspeed (kcas) and power lever angle (PLA).

Notice that the error as calculated by the Suml block has the sign reversed from

the normal convention used in state feedback control. This is because this error feeds

into a linguistic type of fuzzy controller where the airplane being below the desired path

is "low" and for ease of constructing the fuzzy rules was chosen to be negative. This

error was then fed into the digitizer circuit which was installed to model a digital

computer with a 0.05 second update rate. This update rate was chosen because it

follows the rule of thumb used in autopilots that a controller should have a sample rate
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at least 20 times the short period frequency for smoothness, and a short period faster

than one second is unlikely for these types of airplanes.

Although this project generally attempted to model a human pilot controlling an

airplane, this update rate was a departure from a human pilot who has an update rate

on this control of about 0.5 to 1.0 seconds with a non-constant control response

between updates (not a latching output model). It was found that hold times of 0.01,

0.05 and 0.1 had virtually identical and satisfactory results. Also, with an update rate

faster than 0.5 seconds a smoother fide was obtained. For this reason it was decided to

depart from the human model for this parameter.

The digitized error, error rate and the bank parameter (which was always zero for

this project) were fed into the fuzzy controller which in turn output an elevator rate

command.

Below this section is the envelope protection circuitry which put out a zero or

non-zero command. If the command was non-zero, then the controller ignored the

fuzzy output and used only the output from the envelope protection block. The block

labeled Switch2 switched the output based on the value of its middle input.

The clock and Switchl block force the controller to output a rate of zero until the

controllers are turned on at 2 seconds. This allows the simulation trim routine to find

the correct control positions without feedback from the controllers. It also allows the

simulation to operate open loop during this time before feedback control is started.

Since the output of both the fuzzy and envelope protection parts of the controller

were in degrees per second and the airplane simulations required radians, a conversion

was done just after Switch2. The limited integrator was required to integrate elevator

rate to obtain elevator position with the limits corresponding to the elevator stops on

each airplane.
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4.1.2 Fuzzy Controller

Aside from the bank parameter, the fuzzy inference engine had two inputs -- flight

path error and error rate. The input sets for these two parameters are shown in figures

5 and 6. Figure 7 shows a list of the rules and output s'mgletons, while figure 8 shows

an overview of the whole system. Figure 9 shows the resulting three dimensional

control surface from this fuzzy inference engine.

The input set boundaries were defined by recalling experiences both flying and

instructing instrument flight students. The fuzzy sets for flight path error (gamma)

were determined first. From personal experience, five sets generally work well for this

type of control system, therefore this number was chosen. Since a normal approach to

landing is 3 degrees it was decided that 4 degrees would definitely be extreme, but 2

degrees was not extreme. Positive and negative errors were made symmetrical since

there was no information to indicate anything else would be better. The small error

sets were then chosen to span the domain from the edge of the extreme set to zero.

The zero set was then chosen to span the domain between the centers of the small error

sets.

It is considerably more difficult to visualize flight path error rate. For this reason,

only three input sets were created for this parameter. The value of 3 degrees per

second was chosen as the boundary for "definitely an error" because in one second this

rate would change the flight path from a normal approach to level flight. The zero

membership edge for this set was then chosen as zero since zero definitely is not an

error, anything else is (at least to some extent). The "zero" set boundaries were chosen

to be the edges of the "error" set boundaries by applying the same logic as was used to

define the "error" boundaries but in reverse.

The rule set was very straight forward. Note that there is a one to one

correspondence between antecedents and consequents in this rule set. This type of rule

set was chosen because it was simple and easy to analyze. This type of rule set has the
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effect of combining all the rules together with their respective strengths with "or" logic.

In other words, the output is a weighted average of all the rules.

The output singletons were also determined based on the author's experience and

perceptions of how much control is a "slight_increase" and how much is an "increase".

The amount of control column travel associated with each output singleton was

converted to elevator motion through a representative gear ratio.

.......!_!..,!!iii!!!!!!,!i!!!i!!,_!,!,_!,!!.!!!!!!i!!.,!,!!!_.!.!!........,,i.!_.,_!.......i.:_ _I
Figure 5. Fuzzy input sets for error in flight path angle.
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Figure 6. Fuzzy input sets for rate of change of flight path error.



1. If (gamma is zero) then (elev_rote is zero) (1)
2. If (gamma is littJe_low) then (elev rote is slight_decrease) (1)
3. If (gamma is linle hi)then (elev_rote is slight_increose) (1)
4. If (gamma is low) then (elev_rate is decrease) (1)
5. If (gamma is hi') then (elev_rate is increase) (1)
6. If (gamma.dot is zero) then (elev_rate is zero) (1)

7. If (gamma_dot is neg) then (elev_rate is decrease) (1)
8. If (gomm_..dot is pos) then (elev_rate is increase)-(1)
9. If (bonk..p_rorn is down) then (elev_rote is zero) (1)
10. If (bank_potato is up)then (elev_rate is zero) (1)

Outputs are:

increase ..................... 10 dog /sec.

slight increase ............ 3 deg / sec.

zero ........................... 0 deg /sec.

slight decrease ........... -3 deg /sec.

decrease .................... -lO dog /sec.

Figure 7. Rules and output singletons for the fuzzy inference engine

controlling the elevator.
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I...........]

1 0 0

Figure 8. Overview of the fuzzy inference engine for the elevator controUer. In this

example there is a flight path error of+1 with 0 error rate. This caused rule #3 (as

signified by the numbers in the left column) to fire at about 50% strength which in turn

caused the corresponding singleton for rule 3 to fire with a weight of SO. When a

• weighted average of all singletons was done, the output for this condition was 0.75

deg/sec.
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Figure 9. Resulting control surface from the fuzzy inference engine

for the elevator controller.

4.2 Speed Controller

The speed controller was considerably more difficult to devise. It also required

much more complexity than the flight path controller. A major reason for this was the

fact that the two airplanes used propulsion packages with very different response

characteristics. The normally aspirated piston engine with a constant speed propeller

had almost instantaneous thrust response to throttle changes. The fan-jet, on the other



hand, had a considerable lag when accelerating, especially at low power or at high

altitude, but a relatively fast response when decelerating.

Also, in turbulence the throttle on a jet airplane is moved the minimum amount

possible because cabin pressurization transients occur with changes in engine speed.

This led to the need for a turbulence detector which reduced the magnitude of the

throttle response when turbulence was detected and the airplane was in otherwise

unaccelerated flight.

29

4.2.1 Controller Architecture

A block diagram of the speed controller is shown in figure 10.

r_
gamma

cocnmand
¢09

[]
_rpm

[]

Pmdk:tlw
p_a change

'l .m_mmam I

Inlhl

Pt.Am _off_"

_ndll

Figure 10. Power lever angle (PLA) controller architecture.
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Theinputsfor thiscontrollerwerecommanded flight path angle (gamma

command deg), commanded airspeed (airspeed command), measured airspeed (KCAS),

engine speed (L_rpm), and angle of attack (aoa).

Just like the flight path controller, this controller also calculated error with the

sign convention reversed from normal feedback control convention. This error was

then fed into the digitizer circuit which was installed to model the way a human pilot

controls the engines. The digitizer calculated error and error rate which was then fed

into the fuzzy controllor which in turn output a throttle lever angle rate command.

Engine acceleration and the PLA rate command are then fed into the engine

dynamics adapter (Dynamic Adapter block) which selectively allowed or blocked

output to the throttle based on engine dynamics.

The "gain factor for turb" block took airspeed error and used it to determine

whether or not the airplane was in steady flight and the error was a result of turbulence.

If it was, then this block output 0.25, if not it output 1.0. The effect of this was to

reduce the throttle motion by three fourths.

The "Predictive PLA change" block used eortfiguration changes and changes in

commanded flight path and airspeed to make preemptive guesses at what the new

throttle setting should be. This change was added to the modified command coming

from the fuzzy controller.

Like with the elevator controller, the envelope protection circuitry for the throttle

put out a zero or non-zero command. If the command was non-zero, then the

controller ignored the fuzzy output and used only the output from the envelope

protection block. The block labeled "use env prot" switched the output based on the

value of its middle input.

The clock and Switchl block force the controller to output a rate of zero until the

controllers are turned on at 2 seconds. This allows the simulation trim routine to find
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the correct control positions without feedback fi'om the controllers. It also allows the

simulation to operate open loop during this time before feedback control is started.

For generality, the control laws were in terms of percent of throttle travel. Just

before exiting this system, the rate was integrated to position and percent position

converted to angular position which the engine subsystem needed as an input.

4.2.2 Predictive Guess Inputs

m
gamma

command
deg

Sum rate

Derivative1 Gain

airspeed Derivative2 Gain1
command

Figure 11. Predictive pla (power lever angle) change subsystem.

Figure 11 shows a block diagram of the predictive PLA change subsystem. Since

engine response could be relatively slow, it was determined that for certain commanded

changes, the engine controller should proactively change the throttle position instead of

waiting for an error to develop Oust like an experienced pilot does). The commands

that triggered this response were landing gear position changes, flap position changes,
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changes in commanded flight path and changes in commanded airspeed. For the sake

of generality, no attempt was made to fine tune the gains associated with each of these

changes. A reasonable guess of gain values was made using piloting experience. For

example if an airplane is in level flight and intercepts a 3 degree glide slope, the

required throttle change is more than about 10% but less than about 20%, therefore a

gain was chosen such that after a commanded flight path change of 3 degrees the

throttle would have moved about 15%. Also, for many airplanes if the landing gear is

extended in level flight at approach speed, a flight path change of about 3 degrees

results. Therefore, the gain for the gear circuit was calculated to move the throttle

abOUt 15% in response to gear extension or retraction. The same reasoning was used

for commanded changes in airspeed and flap position. Note that all of these circuits

use the derivative of the command. This was done to assure that the throttle change

would take place smoothly over the entire time the change in command is occurring.

After the initial change is made by this predictive control circuitry the normal controller

function fine tunes the control based on airspeed error and error rate. Note that these

control commands are added after all output inhibiting logic. This assures that they

always get through undistorted and with no delay, thus mimicking a pilot's response to

these command changes.

4.2.3 Digitizer

It was discovered that when flying in instrument conditions, a pilot uses a kind of

timesharing technique in response to each parameter that he is required to control.

Also, each of these parameters do not get equal update rates, and between updates the

pilot behaves similar to a digital device which makes a step position change input then

holds that position until the next update time. An update rate of once every 3 seconds
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was chosen for response to an airspeed error. This update rate was chosen because this

is about the rate at which an experienced instrument pilot scans the airspeed indicator.

A simple zero order sample and hold block was used to digitize the airspeed

error. The difference between two successive errors divided by the sample rate was

used to provide the equivalent of a digital error rate. Figure 12 shows a block diagram

of this subsystem.

a/s
error

pla_update Mux3 discrete
delay derivative

Mux outto

con_f_oler

Figure 12. Digitizing subsystem of the PLA controller.

4.2.4 Engine Dynamics Adapter

This subsystem was the part that made this an adaptive controller. It caused the

effective rate of change of throttle position to be reduced when engine response was

slow. Without this subsystem, the jet engine exhibited non-linear oscillatory behavior

which was very unsatisfactory (and in some flight conditions, unstable).

There were three basic parts to this system, the throttle pulser, the stable engine

detection part and the large change override circuit.

The throttle pulser caused the throttle to move in a series of ramped steps.

Movement was allowed for only one second immediately a_er a sample of error and

error rate was calculated. This was implemented as an attempt to model a human
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pilot's behavior. After the pilot determines the required input, he smoothly moves the

throttle and then leaves it there until the next scan cycle.

The stable engine detector did not allow a throttle movement to occur if the rate

of change of engine speed was greater than a prescribed value. This prevented the

oscillatory behavior of the jet engine since it effectively eliminated the phase lag caused

by the slow engine dynamics. The value of 0.5% per second was chosen as the stable

boundary because this is about as small a value as is practical such that turbulence will

not interfere with controller operation. (Turbulence will cause some engine speed

fluctuations.)

The large change override circuit was implemented to allow a large input to be

made even if the engine had not stabiliT.ed. This had the effect of speeding up the

response to airspeed errors without causing oscillations. This was a form of gain

scheduling as a function of control magnitude where the gain schedule adapted itself to

the response characteristics of the plant. The value of 20% per second was chosen as

the trigger magnitude because changes smaller than that were generally the kind that

caused the oscillations.

Figure 13 shows a block diagram of this subsystem.
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This systemallowsthe throffie to move onlyfor one secondafter update
of the inputto the fuzzy controller. It also allowsan inputto pass

if the engineis steady or requestedpla change is large,

Figure 13 Engine dynamics adapter circuit.

4.2.5 Turbulence Detector

Since constantly moving the throttle of a jet in response to turbulence causes

cabin pressurization transients, it is considered bad piloting technique For this reason

a turbulence detector was added which reduced the magnitude of the rate of throttle

change by a factor of 4 when it detected that the airplane had reached steady state but

was experiencing airspeed errors due to flying in turbulence It was determined that the

airplane had reached steady state if the airspeed error was less than 5 knots and the

acceleration based on the last 20 seconds was less than 05 knots per second

Figure 14 shows a block diagram of this subsystem.
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Figure 14. Turbulence detector subsystem.

4.2.6 Fuzzy Controller

The fuzzy inference engine had two inputs - airspee_i error and error rate. The

input sets for these two parameters are shown in figures 15 and 16. Figure 17 shows a

list of the rules and figure 18 defines the output singletons (note that two of the output

singletons are moving). Figure 19 shows an overview of the whole system and figure

18 shows the resulting three dimensional control surface fi'om this fuzzy inference

engine.

The set boundaries and singleton values were obtained fi'om personal experience

flying and instructing in airplanes represented by both simulations. The same

techniques and thought processes were used in determining the set boundaries for the

speed controller as were used for the flight path controller. The major differences were

the fact that the error rate input had 5 sets for this controller while the flight path

controller had 3, and the rule set was of the type where each rule had two antecedents

connected by an "and" logical operator.

While flight path error rate was difficult to judge in the cockpit, airspeed error

rate was not. This is because many modern business jets with electronic flight displays

have an "airspeed trend vector ". This trend vector usually takes the form of a magenta

line on the airspeed indicator with one end at the airspeed pointer and the other end at
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the airspeed that the airplane will be flying 10 seconds fi'om now given the current

acceleration. Since airspeed error rate could be estimated much more readily, 5 fuzzy

input sets were developed in an attempt to provide this controller as much fidelity to a

human pilot as possible.

The exclusive use of"and" rules in this rule set allowed the use of the equivalent

of a 2 dimensional look-up table to define the output singletons. This form was chosen

based on previous experience developing a fuzzy logic controller to regulate the fan

speed of a jet engine (which worked well). The values of the singletons were chosen as

a result of much "armchair flying" where an airspeed error and error rate were imagined

and the corresponding throttle motion recalled.

Note that the slight error with zero error rate singletons are a function of airspeed

error (they are moving singletons). This type of output was implemented because with

small airspeed error and no acceleration, pilots tend to make small corrections that are

proportional to error.

Unlike the flight path controller where the first set of values produced satisfactory

results, this controller required some tweaking to provide satisfactory results. These

adjustments were made through trial and error. The larger values seemed to be fairly

robust while most of the adjustments were made to the smaller values.
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Figure 15. Fuzzy input sets for airspeed error.
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Figure16. Fuzzy input sets for airspeed error rate.
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ERROR

neg

slight_neg

neg

50

30

ERROR RATE

slight_neg

20

10

zero

10

-0.2*error

slight_.pos

0

po$

0

0 -6

zero 10 4 0 -4 -10

slight_pos 6 0 -0.2*error -10 -30

pos 0 0 -10 -50-2O

Figure 18. Output singletons in percent of throttle travel per second for the fuzzy

throttle controller. Note that these are referred to in figure 16 by their row and column

numbers. For example, rule 1_1 is 50 and rule 3_4 is -4.
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Figure 20. control surface produced by the fuzzy inference engine

for the throttle controller.
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4.3 Envelope Protection

For the purpose of this study, only two forms of envelope protection were

implemented. These were stall protection and overspeed protection. The elevator was

involved in both of these. When an angle of attack above the limit was sensed, the

elevator controller ignored all other inputs and moved the elevator trailing edge down

at a rate of 5 degrees per second until the angle of attack was below the limit. For

overspeed protection, the elevator controller sent a trailing edge up command of 5

degrees per second when the airspeed was above the limit and the power lever angle

(PLA) was near the idle stop. This protected against the case where the commanded

flight path angle was steep enough that even at idle the airplane would accelerate past

the maximum allowed airspeed. Figure 21 shows a block diagram of the protection

circuit in the flight path angle controller.
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Figure 21. Envelope protection in the flight path angle controller.

The throttle was also involved with both stall and overspeed protection. When an

angle of attack above the limit was sensed, the PLA controller ignored all other inputs

and moved the throttle forward at a rate of 50% of travel per second until the angle of

attack was below the limit. For overspeed protection, the PLA controller moved the

throttle aR at a rate of 50% per second while the airspeed was above the limit. Figure

22 shows a block diagram of this circuit.
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Figure 22. Envelope protection in the airspeed controller.

The elevator controller and the throttle controller were designed to work together

so that the system as a whole behaves like a human pilot does during a stall recovery or

inadvertent overspeed. The values of the elevator and throttle movements were chosen

to reflect good piloting practice with the assumption that the angle of attack limit is set

at the equivalent of stall warning, not actual stall angle of attack.



5 RESULTS

Simulations were run using both airplanes for the following flight maneuvers.

l) Level flight with gear and flaps retracted through final landing approach

including extension of the gear and flaps followed by a climbing missed

approach in light turbulence

2) Transition from level flight to a maximum power climb and back to level

flight

3) High speed dive to exercise the overspeed protection circuit

4) Level flight speed reduction to exercise the stall protection circuit

In all cases the controllers worked acceptably for both airplanes when operating

within the normal flight envelope. The jet airplane however, displayed more sluggish

response, and overshoot characteristics than the piston powered airplane. This is

interesting because these are some of the same characteristics that pilots notice most

when transitioning from smaller to larger airplanes. Also, the controllers generally

handled the piston airplane better than the jet airplane. This was a surprise since the jet

simulation was used to develop the controllers which were then moved to the piston

simulation after the design and parameters were "fi'ozen". This fact strongly suggests

that a general knowledge of how to fly an airplane was successfully implemented in the

control schemes.

For many of the control parameters, the first guess worked well enough that no

change was required. This leads to the suspicion that the range of acceptable values for

this type of control system is fairly large. In fact, individualhuman pilots fly with

different control parameters (styles) further validating the idea that these parameters

are rather insensitive to perturbations as long as they are generally correct.

The results show that by using a fuzzy logic based control system, a wide range

of general aviation airplanes can successfully use a common controller.

47
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5.1 Beechjet Simulation Results

Figure 23 shows the time history of the jet simulation transitioning from initial

approach to final approach and then executing a missed approach. The simulation was

started with the airplane trimmed for level flight at 150 knots. At 2 seconds the

controllers were turned on. An airspeed reduction to 120 knots was commanded while

maintaining level flight. At about 35 seconds the landing gear was lowered, and at 40

seconds the flaps were extended. At 60 seconds a flight path command of 3 degrees

down was given. At 150 seconds a missed approach was initiated by commanding a

flight path of 3 degrees up. This case demonstrated the characteristics of the

controllers coupled with the business jet at low speed with configuration changes.

Note that the characteristics of the speed controller caused the throttle to move in

a series of pulses as is shown in by the throttle lever rate trace (PLA rate).

Also of note is the acceleration at the missed approach point. This was caused by

the stall protection circuit. The airspeed Was relatively slow and the change in flight

path angle large enough in a short time that the maximum allowed angle of attack was

reached. This caused a large and rapid throttle movement which took some time to

wash out because the engine dynamics adapter waited for the engine to respond to the

throttle change before allowing the next change to pass.
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Figure 23. Approach and miss time history for the jet.

See figure 31 (page 64) for legend.
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Figure 24 shows a time history of the business jet transitioning from level flight to

climbing at maximum thrust and then leveling offat 35,000 feet. The airplane was

initially trimmed for level flight at 35,000 feet and 250 knots ('Mach 0.74). The

controllers were turned on at 2 seconds. At the same time a command to climb at a 3

degree flight path angle and maintain 250 knots was given. The flight path controller

followed this command and the throttle increased to maximum in an attempt to hold the

commanded speed. At lO0 seconds the command to level was given. The flight path

controller followed this with a slight overshoot. The throttle controller reduced the

throttle in response to the change in flight path command, and then moved the throttle

back to maximum to accelerate the airplane back to the commanded speed. This

simulation was not allowed to continue until the speed stabilized because acceleration

was so slow that it was impractical to run it that long.
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See figure 31 (page 64) for legend.
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Figure 25 shows a time history of the business jet exercising the overspeed

protection feature at cruise altitude. The airplane was trimmed for level flight at

35,000 feet and 250 knots (0.74 Mach). After the controllers were turned on at 2

seconds a flight path of 5 degrees down was commanded to induce an overspeed even

at idle. For this demonstration the maximum speed limit was set at 260 knots (0.77

Mach). The overspeed limit was first crossed at about 27 seconds. At this time the

throttle was moved rapidly to idle and the elevator moved to lessen the decent rate until

the speed was again less than the limit. Since an overspeed condition did not exist from

30 to 75 seconds the elevator controller tracked the 5 degree commanded flight path.

At 75 seconds the speed limit was again exceeded and the recovery process repeated.
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Figure 26 shows a time history of the business jet exercising the stall protection

feature. The airplane was trimmed for level flight at 150 knots. The controllers were

turned on at 2 seconds. A level flight command at a speed slower than the level flight

stall speed was given. As the airplane slowed the angle of attack increased until the

maximum allowed of 12 degrees was reached at about 40 seconds. At this time the

stall protection feature was activated and the elevator moved to reduce the angle of

attack to less than 12 degrees. At the same time, the throttle moved rapidly to full

power so as to minimize altitude loss. The airplane then entered a series of oscillations

centered about the aoa limit while accelerating and descending until sufficient speed

was recovered to allow level flight, at which time the throttle started to move back in

another attempt to achieve the commanded speed. Since the actual stall angle of attack

for this airplane is 20 degrees, an actual stall did not occur even during the oscillations.

The presence of this oscillatory behavior suggests that the elevator controller might

benefit fi,om a circuit that adapts the elevator movement to airplane response similar to

the one incorporated in the speed controller.
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5.2 Piston Single Simulation Results

Figure 27 shows the time history of the piston simulation transitioning from slow

cruise to final approach and then executing a missed approach in turbulence. The

simulation was started with the airplane trimmed for level flight at 130 knots. At 2

seconds the controllers were turned on. At 10 seconds an airspeed of 90 knots was

commanded. At 50 seconds the gear is lowered. At 60 seconds a flight path of 3

degrees down was commanded. At 100 seconds the flaps are extended. At 120

seconds a missed approach was initiated by commanding a flight path angle of 3

degrees up. This case demonstrated the characteristics of the controllers coupled with

the piston airplane at medium to low speed with configuration changes.
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See figure 31 (page 64) for legend.
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Figure 28 shows a time history of the piston powered single engine airplane

climbing at maximum power, then leveling and accelerating to maximum level flight

speed. The airplane was initially trimmed at 130 knots with power for level flight. The

controllers are turned on at 2 seconds and command an airspeed of 180 knots with a

climb angle of 3 degrees. The throttle moved to 100 percent while the flight path

followed the gamma command. At 50 seconds the airplane had stabilized at the

maximum speed it can attain while maintaining the commanded flight path. At 75

seconds a level flight path was commanded. The airplane followed this command and

accelerated to maximum level flight speed (which is less than the commanded speed).

When the level off command was given, the throttle moved from the maximum position

momentarily. This is a nuisance area where more intelligence could have been built into

the predictive throttle movement circuit. However, it was thought that specific

knowledge of an airplane's maximum flight speed would jeopardize the generality of

this system.
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Figure 29 shows a time history of the piston powered single engine airplane

exercising the overspeed protection feature. With the airplane trimmed for level flight

at 130 knots, the controllers were mined on and commands given to accelerate to the

maximum allowable speed and dive at 10 degrees. The steep decent was commanded

so that a sufficient acceleration could be maintained such that an overspeed would

occur. At about 55 seconds the overspeed did occur. At this time the throttle moved

rapidly to almost idle. As the airspeed stabiliT_ed the throttle moved forward to

maintain the commanded speed.
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Figure 30 shows a time history of the piston powered single engine airplane

exercising the stall protection feature. The airplane was set up in level flight at 130

knots. The controllers were turned on at 2 seconds. A level flight path was

conunanded at a speed slower than the level flight stall speed. As the airplane slowed

the angle of attack increased until the maximum allowed of 12 degrees was reached at

54 seconds. At this time the stall protection feature was activated and the elevator

moved to reduce the angle of attack to less than 12 degrees. At the same time, the

throttle moved rapidly to increase power so as to minimize altitude loss. The throttle

and elevator controllers then worked together to maintain an angle of attack near the

maximum while holding close to the commanded flight path.
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Plot Legend

flaps (fl)

gear(gr)

delnz

KCAS

AOA

Elev pos

PLA rate

Gamma

PLA

N1

Flap position 0 is retracted, 100% is full down (solid line for jet)

Landing gear position 0 is retracted 1 is extended (dashed line for jet)

Change in normal acceleration in gs from lg

Knots Calibrated Airspeed (dashed line is commanded)

Angle of attack in degrees

Elevator position in degrees

Power lever rate, percent per second

Flight path angle in degrees (dashed line is commanded)

Power lever angle, percent

Jet engine fan speed 104% is maximum allowable

Figure 31. Legend for the plot labels of figures 23 - 30



6 DISCUSSION

6.1 Unexpected Discoveries

There were several unexpected discoveries associated with this project. These in

general had to do with the psychology of flying an airplane and fact that the

development of the controllers naturally followed the same progression as a human

does when learning to fly.

6.1.1 Difficulty Obtaining Accurate and Complete Knowledge

One of the most difficult tasks in developing a fuzzy model of a human

controlling a complex machine is that of extracting information that is both complete

and accurate from a human expert. It was expected that since this project required

extracting this knowledge from the author (who holds an airline transport pilot ficense

and is an instrument flight instructor) that this task would be relatively simple (no

miscommunication, immediate access, etc.). Given this expectation, it was a surprise

to discover the amount of difficulty involved in accurately analyzing the reaction and

control processes that are required to fly an airplane. Many of the required actions are

in fact trained reflexes Which are not easily transferred from the subconscious to the

conscious part of the brain. Even when this transfer was successfully made, the form

the information took was usually in a graphical or tactile form, not in the form of set

boundaries and output rules. For example, a combination of visual images received by

the pilot triggers a learned reflex of applying a given amount of force (governed by

tactile feedback) to the control column. The task then became one of convening a

visual image into fuzzy input sets, and learned reflexes into rules and output sets with

which a computer can work.

65
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This difficulty shed some light on the reasons why learning to fly an airplane well

in instrument conditions requires such a large investment in time and effort both for

initial training and recurrent proficiency.

6.1.2 Instrument Pilots Operate Like Timesharing Digital Devices

A considerable amount of effort was spent attempting to get reasonable engine

response from the jet engine simulation. There was a high confidence level that the

fuzzy input sets, rules and outputs were correct or nearly so, but the aircraft's speed

response to command changes was not satisfactory. After much introspection and

discussions with other pilots, it was discovered that pilots (especially in instrument

conditions) behave like timesharing digital devices with time split unevenly between

tasks.

If systems management is ignored, the pilot who is flying an ILS (precision

approach using only aircraft instruments) has three basic things to control, and one

input to monitor closely. The control requirements are vertical flight path, horizontal

flight path and airspeed. The monitored input is altitude (which triggers a missed

approach). In accomplishing this task, the pilot is trained to continuously move his

eyes in a predefined pattern fi'om one instrument to another without stopping at any

one instrument longer that it takes to interpret the data displayed by that instrument.

He then formulates and executes a control input based on that data while moving to the

next instrument. Response to that control is then received and evaluated the next time

he scans that instrument. For the airspeed indicator, the scanning cycle takes from 3 to

5 seconds for an experienced pilot. The pilot gets many more indications of vertical

flight path (altimeter, glide slope, vertical speed indicator, g loading, etc.) and therefore

controls it with an update rate that can be faster than one second.
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Eventhough the continuous flight path controller was acceptable, a 0.05 second

zero order sample and hold was incorporated to model a digital design.

A 3 second zero order sample and hold was implemented in the throttle

controller. This improved the airplane response somewhat, but was still unacceptable.

It was then realized that although this sample time was about fight, the pilot does not

move the throttle continuously during this time period. The output logic block was

added at this time to limit throttle travel to the second immediately following the taking

of the sample. This worked well with the piston simulation, but the jet simulation went

into non-linear oscillations during some flight conditions.

6.1.3 How Pilots Adapt to Engine Response Characteristics

One of the differences between piston powered airplanes and corporate jets is the

engine's response to throttle changes. A normally aspirated piston engine with a

constant speed propeller restabilizes on a new power setting almost immediately, while

a jet engine takes several seconds to restablize. In addition, the jet engine accelerates

much more slowly than it decelerates. These engine characteristics in turn cause these

two airplanes to have very different speed response characteristics as a result of a

throttle change by the pilot. The human pilot adapts to this by thinking further ahead

of the airplane (anticipating) and making earlier power changes in the jet. He also

knows that the jet engine will not respond to rapid throttle changes, and therefore

makes slow changes. (This technique also works for the piston airplane, but is not

required.)

Since the controller developed in this project was intended to be used on both

types of engines, some scheme of adapting the controller to the engine was required, or

the controller would need to be made to act slowly enough that it could accommodate

any engine. Since piston powered airplanes generally have faster responses to
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turbulence, and therefore sometimes need faster throttle movements to control speed, it

was decided that an adaptive controller was the best type.

Since pilots use engine response to determine the maximum allowable frequency

of throttle changes, this same type of system was incorporated into the electronic

controller. The engine response was determined by continuously monitoring the

acceleration rate. The maximum effective frequency was governed by not allowing a

subsequent throttle change until the engine had nearly stabtized from the previous

change. Also, since plots have the ability to determine that aiarger change is required

than was first estimated and then command that change without waiting for the engine

to stabtiTe, this feature was also incorporated into this controller.

6.1.4 Controller Development Compared to Human Learning

The development sequence used during this project was"

1) Fuzzy flight path controller without the sample and hold feature

2) Fuzzy speed controller

3) Sample and hold input for the speed controller

4) Pulsed output for the speed controller

5) Add sample and hold, and output logic to flight path controller

6) Turbulence detector and corresponding gain reduction

7) Predictive power changes

8) Envelope protection

It is interesting to note that if items 2, 3, 4 and 5 are grouped together, that this

represents a typical sequence of learning for a human who is in the process of earning a

private pilot license.

When the beginning student is given his first task (control flight path) by itself, he

tends to behave like a continuous control device. However, when the second function
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is added (accurate speed control) he tends to fixate on one or the other, thus causing a

pronounced version of the digital response characteristics described above. Thus, items

2, 3, 4 and 5 all develop simultaneously in the human pilot.

Even though there was no conscious attempt for controller development to

follow the sequence normally experienced by flight students, it was interesting to note

that for this project where mirroring human behavior in the final product was desired,

that this was the sequence that occured.

It is generally accepted that a business jet is more difficult to fly than a piston

powered single engine airplane. These controllers did a better job controlling the

piston airplane than the jet airplane, despite the fact that they were developed on the

jet. These controllers were developed by attempting to translate a human pilot's

knowledge into computer software. Given this, is it possible that the knowledge

translation was accurate and complete enough that this ease of controlling bias toward

the smaller airplane got transferred to the controllers?

6.2 Continued Research

Since this is a new control scheme, there are areas where improvements can be

made in performance. This is the first area for continued work.

The next step is to expand it to include the lateral axis. Also, if this type of

control scheme is to be used throughout the entire flight envelope, then takeoff and

landing must be considered. After these features are implemented, takeoffand landing

during gusty cross winds needs to be addressed. And in the final analysis, to ensure

that this type of control scheme really works, it needs to be installed on an airplane and

flight tested.



Since there is some latitude in the control parameters, an area of continued

research would be to determine how sensitive the final results are to each of these

parameters. Also, to determine which parameters have the largest effects.

Because analyzing time histories is an inefficient way to design control systems,

there is a real need to develop better tools for designing controllers for non-linear

systems in general and fuzzy logic controllers in particular.

7O
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Appendix

Simulink Block Diagrams of the Piston Powered Single Engine Airplane
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Simulink piston powered single engine airplane block diagram
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(4"bwlpi/Vtaszem)l+ 1

p-_ust(Boeir_)

____ sigv'sclrtC2"LvNtaszem)'[sqr t(12)'LvNtaszem, l](s)4"(LvNtaszem)'(LvNtaszeto)s +4*(Lv_szem)s+ 1

v-gust (1797A)

___ (1Nta_ero)s

(3"bwlpiNtaszero_+ 1 r

r-gust(Boeing)

___ s_gw'sqrt(2"l_wNtaszem)'[sqrt(12)'LwNtaszero. 1](s)4"(Lw/Vtaszero)*(LwNtaszero)s +4"(L_Ntaszero)s+ 1

w-gust (1797A)

___ (1Ntaszem)s

(4"bw/piNtaszem)s+ 1 I

q-g._(Bo_n_)

Rg

Dryden wind gusts subsystem
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